Algebra

$1 \quad$ a Find the value of x such that

$$
\begin{equation*}
2^{x-1}=16 \tag{3}
\end{equation*}
$$

b Find the value of y such that

$$
\begin{equation*}
2\left(3^{y}-10\right)=34 \tag{2}
\end{equation*}
$$

2 a Express $x^{2}-6 x+11$ in the form $(x+a)^{2}+b$.
b Sketch the curve $y=x^{2}-6 x+11$, and show the coordinates of the turning point of the curve.

3 a Express $\left(12 \frac{1}{4}\right)^{-\frac{1}{2}}$ as an exact fraction in its simplest form.
b Solve the equation

$$
\begin{equation*}
3 x^{-3}=7 \frac{1}{9} . \tag{3}
\end{equation*}
$$

4 Solve the equation

$$
x \sqrt{12}+9=x \sqrt{3}
$$

giving your answer in the form $k \sqrt{3}$, where k is an integer.
5 a Solve the equation

$$
\begin{equation*}
x^{2}+10 x+13=0 \tag{4}
\end{equation*}
$$

giving your answers in the form $a+b \sqrt{3}$, where a and b are integers.
b Hence find the set of values of x for which

$$
\begin{equation*}
x^{2}+10 x+13>0 \tag{2}
\end{equation*}
$$

6 Solve the equations
a $7(6 x-7)=9 x^{2}$
b $\frac{2}{y+1}+1=2 y$
7 Solve the simultaneous equations

$$
\begin{align*}
& x-y+3=0 \\
& 3 x^{2}-2 x y+y^{2}-17=0 \tag{6}
\end{align*}
$$

$8 \quad$ a Find the value of x such that

$$
\begin{equation*}
x^{\frac{3}{2}}=64 \tag{2}
\end{equation*}
$$

b Given that

$$
\begin{equation*}
\frac{\sqrt{3}+1}{2 \sqrt{3}-3} \equiv a+b \sqrt{3} \tag{4}
\end{equation*}
$$

find the values of the rational constants a and b.
9 The point $P(2 k, k)$ lies within a circle of radius 3 , centre $(2,4)$.
a Show that $5 k^{2}-16 k+11<0$.
b Hence find the set of possible values of k.

10 Solve each of the following inequalities.
a $4 x-1 \leq 2 x+6$
b $x(2 x+1)<1$

11

$$
\begin{equation*}
f(x)=2 x^{2}-8 x+5 \tag{4}
\end{equation*}
$$

a Express $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$, where a, b and c are integers.
b Write down the coordinates of the turning point of the curve $y=\mathrm{f}(x)$.
c Solve the equation $\mathrm{f}(x)=0$, giving your answers in the form $p+q \sqrt{6}$, where p and q are rational.

12 Simplify
a $\sqrt{12}-\frac{5}{\sqrt{3}}$
b $\frac{(4 \sqrt{x})^{3}}{16 x}$

13 Given that the equation

$$
x^{2}-2 k x+k+6=0
$$

has no real roots, find the set of possible values of the constant k.

The diagram shows triangle $A B C$ in which $A B=B C=4+\sqrt{3}$ and $A C=4+4 \sqrt{3}$.
Given that M is the mid-point of $A C$,
a find the exact length $B M$,
b show that the area of triangle $A B C$ is $6+2 \sqrt{3}$.

15 Solve the equation

$$
\begin{equation*}
4^{2 y+7}=8^{y+3} . \tag{4}
\end{equation*}
$$

16 Show that

$$
\begin{equation*}
\left(x^{2}-x+3\right)\left(2 x^{2}-3 x-9\right) \equiv A x^{4}+B x^{3}+C, \tag{4}
\end{equation*}
$$

where A, B and C are constants to be found.
$17 \quad \mathrm{f}(x)=x^{2}+4 x+k$.
a By completing the square, find in terms of the constant k the roots of the equation $\mathrm{f}(x)=0$.
b State the set of values of k for which the equation $\mathrm{f}(x)=0$ has real roots.
c Use your answers to part a to solve the equation

$$
x^{2}+4 x-4=0
$$

giving your answers in the form $a+b \sqrt{2}$, where a and b are integers.

