ALGEBRA

1	a	Find the value of x such that	
		$2^{x-1} = 16.$	(3)
	b	Find the value of <i>y</i> such that	
		$2(3^{y}-10)=34.$	(2)
2	a	Express $x^2 - 6x + 11$ in the form $(x + a)^2 + b$.	(2)
	b	Sketch the curve $y = x^2 - 6x + 11$, and show the coordinates of the turning point	(2)
		of the curve.	(3)
3	a	Express $(12\frac{1}{4})^{-\frac{1}{2}}$ as an exact fraction in its simplest form.	(2)
	b	Solve the equation	
		$3x^{-3} = 7\frac{1}{9}$.	(3)
4	Sc	olve the equation	
		$x\sqrt{12} + 9 = x\sqrt{3},$	
	gi	ving your answer in the form $k\sqrt{3}$, where k is an integer.	(4)
5	a	Solve the equation	
		$x^2 + 10x + 13 = 0$,	
		giving your answers in the form $a + b\sqrt{3}$, where a and b are integers.	(4)
	b	Hence find the set of values of <i>x</i> for which	
		$x^2 + 10x + 13 > 0.$	(2)
6	Solve the equations		
	a	$7(6x-7) = 9x^2$	(3)
	b	$\frac{2}{y+1} + 1 = 2y$	(4)
7	Sc	olve the simultaneous equations	
		x - y + 3 = 0	
		$3x^2 - 2xy + y^2 - 17 = 0$	(6)
8	a	Find the value of x such that	
		$x^{\frac{3}{2}} = 64.$	(2)
	b	Given that	
		$\frac{\sqrt{3}+1}{2\sqrt{3}-3} \equiv a + b\sqrt{3},$	
		find the values of the rational constants <i>a</i> and <i>b</i> .	(4)
9	Tł	the point $P(2k, k)$ lies within a circle of radius 3, centre (2, 4).	
	a	Show that $5k^2 - 16k + 11 < 0.$	(4)
	b	Hence find the set of possible values of <i>k</i> .	(3)

© Solomon Press

continued

(2) (4)

(4)

(4)

ALGEBRA

10 Solve each of the following inequalities.

$$\mathbf{a} \quad 4x - 1 \le 2x + 6$$

b
$$x(2x+1) < 1$$

$$f(x) = 2x^2 - 8x + 5.$$

- **a** Express f(x) in the form $a(x+b)^2 + c$, where a, b and c are integers. (3)
- **b** Write down the coordinates of the turning point of the curve y = f(x). (1)
- c Solve the equation f(x) = 0, giving your answers in the form $p + q\sqrt{6}$, where *p* and *q* are rational. (3)

12 Simplify

$$\mathbf{a} \quad \sqrt{12} \quad - \frac{5}{\sqrt{3}} \tag{3}$$

$$\mathbf{b} \quad \frac{(4\sqrt{x})^3}{16x} \tag{2}$$

13 Given that the equation

$$x^2 - 2kx + k + 6 = 0$$

has no real roots, find the set of possible values of the constant k. (6)

The diagram shows triangle ABC in which $AB = BC = 4 + \sqrt{3}$ and $AC = 4 + 4\sqrt{3}$.

Given that *M* is the mid-point of *AC*,

- **a** find the exact length *BM*,
- **b** show that the area of triangle *ABC* is $6 + 2\sqrt{3}$. (2)
- **15** Solve the equation

$$4^{2y+7} = 8^{y+3}.$$
 (4)

16 Show that

 $(x^2 - x + 3)(2x^2 - 3x - 9) \equiv Ax^4 + Bx^3 + C,$

where *A*, *B* and *C* are constants to be found.

17

 $\mathbf{f}(x) = x^2 + 4x + k.$

- **a** By completing the square, find in terms of the constant k the roots of the equation f(x) = 0. (4)
- **b** State the set of values of k for which the equation f(x) = 0 has real roots. (1)
- c Use your answers to part **a** to solve the equation

$$x^2 + 4x - 4 = 0,$$

giving your answers in the form $a + b\sqrt{2}$, where a and b are integers. (2)

© Solomon Press